SAMPLE HINTS AND SOLUTIONS

INSTITUTE NAME & LOGO

MHT-CET - EXAM YEAR

Time: 45 Min Chem: Full Portion Paper Marks: 50

Hints and Solutions

51) Ans: **A)** they can withstand high temperature. Sol: These are the materials which can withstand very high temperature without melting or becoming soft

52) Ans: **A)** HCHO

53) Ans: **A)** Nylon

Sol: Step growth polymerization involves condensation reaction between two difunctional monomer to form dimer which in turn, produce tetramer and so on with the loss of simple molecules like $\rm\,H_2O$, $\rm\,NH_3$, $\rm\,HCl$ etc.

54) Ans: **B)** the action of moist silver oxide.

Sol: $Ag_2O + H_2O \rightarrow 2AgOH$

 $C_2H_5Br + AgOH \rightarrow C_2H_5OH + AgBr$

55) Ans: **A)** adiabatic expansion.

Sol: When a real gas is forced through a porous plug into a region of low pressure, it is found that because of expansion, the gas on the side of low pressure gets cooled.

The phenomenon of producing lowering of temperature when a gas is made to expand adiabatically from a region of high pressure into a region of low pressure is known as Joule-Thomson effect.

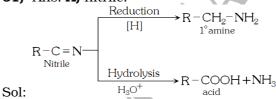
56) Ans: **A)** the molecules aggregate because of hydrogen bonding in HF.

Sol: The molecules aggregate because of hydrogen bonding in HF.

57) Ans: **B)** same boiling and same freezing points.

58) Ans: C) 2, 4-dimethylaniline.

Sol: CH₃ is a type of 1° amine and therefore gives +ve carbyl test.


59) Ans: **A)** Δ H is + ve; Δ S is - ve.

Sol: Both +ve ΔH and -ve ΔS oppose the reaction.

60) Ans: B) Cinnabar

Sol: Cinnabar (HgS) which is the ore of mercury, is concentrated by froth floatation process.

61) Ans: **A)** nitrile.

62) Ans: **A)** 0.25

Sol: Here, Mole fraction of solute = $\frac{20}{80}$ = 0.25

63) Ans: **A)** Phenol

64) Ans: A) Phenyl acetic acid

Sol: All acids are fatty acid except phenyl acetic acid.

65) Ans: **A)** Henry's law.

66) Ans: **C)** Hess's law.

67) Ans: **A)** diethyl ether.

Sol:
$$2C_2H_5Br + Ag_2O \rightarrow C_2H_5 - O - C_2H_5 + 2AgBr$$

If moist Ag₂O is used, then alcohol is formed.

$$Ag_2O + H_2O \rightarrow 2AgOH$$

 $\mathrm{C_2H_5Br} + \mathrm{AgOH} \rightarrow \mathrm{C_2H_5OH} + \mathrm{AgBr}$

68) Ans: **D)** 33 min

Sol:
$$x_{(g)} \longrightarrow y_{(g)} + z_{(g)}$$

The reaction is a first order reaction, so

$$K = \frac{0.693}{t_{1/2}} = \frac{2.303}{t} \log \frac{a}{a - x} = \frac{0.693}{10 \text{ min}}$$

$$K = \frac{2.303}{t} \log \frac{a}{a/10}$$

$$=\frac{0.693}{10}=\frac{2.303}{t}\log 10$$

$$\therefore t = \frac{2.303 \times 10}{0.693} = 33 \, min$$

69) Ans: **C)** 4

Sol: $[Co(NH_3)_6]Cl_3 \rightleftharpoons [Co(NH_3)_6]^{3+} + 3Cl^{-1}$

70) Ans: **C)** 35

Sol: Here, EAN of a central metal ion = (atomic no. of central atom) - oxidation state + no. of ligands×2 = $26-3+(6\times2)=23+12=35$

71) Ans: **C)** $C_6H_5CHCl_2$

Sol: C₆H₅CHCl₂

72) Ans: **C)** minimum P. E.

Sol: Stable arrangement is provided by lowest potential energy level.

73) Ans: **B)** - 70 calories

Sol: S (rhombic) $+ O_2 \rightarrow SO_2$, $\Delta H = 70960$ cal. ...(i) S (monoclinic) $+ O_2 \rightarrow SO_2$, $\Delta H = 71030$ cal ...(ii) We want, S (rhombic) \rightarrow S (monoclinic) Thus, eq. (i) - eq. (ii) gives the required result.

74) Ans: **C)** collision frequency increases.

Sol: As the temperature is increased, heat energy is supplied which increases the kinetic energy of the reacting molecules. This will increase the number of collisions and ultimately the rate of reaction will be enhanced.

75) Ans: B) Aldehydes

76) Ans: **B)** C-Mg bond.

Sol: Because of C-Mg bond.

77) Ans: **A)** Analgin

Sol: An analgesic drugs is one that relieve or decrease the pain such as analgin, aspirin (belongs to non-narcotics) and morphine, codeine, heroin (belongs to narcotics class).

78) Ans: **C)** C_2H_5OH

Sol: As C_2H_5OH is non electrolyte, so it does not ionize.

79) Ans: B) non-corrosive.

80) Ans: **B)** changes abruptly from solid to liquid when heated.

Sol: In crystalline solid, there is a perfect arrangement of the constituent particles only at 0 K. When the temperature increases, the chance that a lattice site may be unoccupied by an ion increases. When the number of defects increases with temperature, solid changes in liquid.

81) Ans: B) primary alcohol

Sol:
$$R - CHO$$
Aldehyde

Reduction
 $R - CH_2 - OH$

82) Ans: **D)** 0.5 F

Sol: $Na^+ + e^- \rightarrow Na$

Now, Charge (in F) = moles of e- used = moles of Na

deposited =
$$\frac{11.5}{23}$$
 g = 0.5 Faraday

83) Ans: **B)** the atomic weight.

Sol: The atomic weight;

Equivalent weight = $\frac{\text{Atomic weight}}{\text{No. of } e^{-} \text{ lost or gained}}$

Now, $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$

:. Equivalent weight = Atomic weight

84) Ans: **B)** mercurous chloride.

Sol: Mercurous chloride is insoluble in water whereas rest are soluble in water.

85) Ans: **D)** Horn silver

Sol: Horn silver (AgCl)

86) Ans: A) Friedel-Craft's reaction

Sol: Friedel-craft's reaction is used to prepare alkyl benzene or acetophenone. It is not a method to prepare amine.

87) Ans: **C)** sulphur.

88) Ans: **A)** 9 sigma bonds, 3 pi bonds and 2 non-bonding electrons.

Sol: Allyl isocyanide i.e. $CH_2 = CH - CH_2 - N = C$

89) Ans: A) butanone.

90) Ans: B) Haber.

Sol: Haber's process → Industrial process

$$N_2 + 3H_2 \xrightarrow{\text{Fe - Mo}} 2NH_3$$

 $200 - 350 \text{ atm}$

91) Ans: **B)** high B.P.

Sol: Since, Na⁺ as well as K⁺ controls blood pressure and heart beat, thus excess of Na⁺ ion increases B.P.

92) Ans: **D)** Rn

Sol: Rn cause it is radioactive element obtained by the disintegration of radium.

$$_{88} \mathrm{Ra}^{206} \rightarrow {}_{86} \mathrm{Rn}^{202} +_{2} \mathrm{He}^{4}$$

93) Ans: **A)** Cancer

Sol: "Cancer" is termed as molecular disease.

94) Ans: **D)** 1-chloroethene.

Sol: PVC i.e polyvinyl chloride is a polymer of vinyl chloride as

$$n.CH_2 = CH.Cl \xrightarrow{Polymerisation} \begin{bmatrix} Cl \\ \\ \\ I-chloroethene \end{bmatrix} -CH_2 - CH - \end{bmatrix}_n$$

95) Ans: **C)** H₂

Sol: Water is reduced at the cathode while oxidized at the anode instead of Na^+ and SO_4^{2-} .

At cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

At anode :
$$H_2O \rightarrow 2H^+ + \frac{1}{2}O_2 + 2e^-$$

96) Ans: **B)** fatty acid.

Sol: Oleic acid, stearic acid as well as palmitic acids are produced by the hydrolysis of fats and the acid produced by hydrolysis of fats are known as fatty acid.

97) Ans: **B)** the order of the reaction is m + n.

Sol: If rate $= K(A)^m(B)^n$, then the order of reaction = m + n.

98) Ans: **A)** diastase.

Sol: Starch — Diastase — Maltose

99) Ans: **B)** Tertiary > Secondary > Primary

Sol: $R - OX + HX \rightarrow R - X + H_2O$

Reactivity order of alcohols for this reaction is $3^{\circ} > 2^{\circ} > 1^{\circ}$.

 $\mathrel{\raisebox{.3ex}{$.$}}$ Reactivity order of halogen acids

R-I>R-Br>R-Cl.

100) Ans: **C)** 60×10^{-3}

Sol: Here,
$$\frac{-d(N_2)}{dt} = -\frac{1}{3} \frac{d(H_2)}{dt} = \frac{1}{2} \frac{d(NH_3)}{dt}$$

$$\frac{-d(N_2)}{dt} = \frac{3}{2} \times 40 \times 10^{-3} = 60 \times 10^{-3}$$